Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 3 No. 4 (2025): JNATIA Vol. 3, No. 4, Agustus 2025

Klasifikasi Berita Berdasarkan Kategori Menggunakan Convolutional Neural Network dengan IndoBERT

Jonathan Federico Tantoro (Universitas Udayana)
I Dewa Made Bayu Atmaja Darmawan (Universitas Udayana)



Article Info

Publish Date
01 Aug 2025

Abstract

The advancement of technology information has led to a significant increased the volume of digital news, that makes needs for automatic news classification. This study aims to design a model capable of caterogizing Indonesian language news articles into six predefined categories, such as News, Money, Bola, Health, Tekno, and Tren. To achieve this goal, the method used combines IndoBERT as the embedding technique with Convolutional Neural Network (CNN) as the classification algorithm. The dataset consists of 3.000 news articles collected from Kompas.com and is divided into training data and testing data using four different data split ratios: 60:40, 70:30 80:20, and 90:10 . The evaluation results show that the best performance was achieved using the 80:20 ratio, where the model reached an accuracy of 91%, along with high precision, recall, and F-1 Score These result prove that the combination of IndoBERT and CNN is effective for the automatic classification of Indonesian new texts.

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...