Heart disease remains one of the leading causes of death worldwide, making early detection crucial for improving patient outcomes. This study aims to evaluate and compare the performance of several machine learning algorithms in detecting heart disease using the 2015 BRFSS dataset, which includes responses from 253,680 individuals. The three algorithms examined are Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The data preprocessing steps involved feature encoding, class imbalance handling using the Synthetic Minority Over-sampling Technique combined with Tomek Links (SMOTE-Tomek), and hyperparameter tuning through RandomizedSearchCV. The models were assessed on a hold-out validation set using several metrics, including accuracy, Receiver Operating Characteristic-Area Under the Curve (ROC-AUC), F1-score, precision, and recall. The results demonstrated that XGBoost achieved the highest performance, with an accuracy of 94%, a ROC-AUC score of 0.98, and an F1-score of 0.94. In comparison, KNN achieved an accuracy of 87% (ROC-AUC 0.95), while SVM attained an accuracy of 79% (ROC-AUC 0.86). These findings suggest that XGBoost is a robust model for large-scale heart disease classification and holds potential for implementation in clinical decision support systems.
Copyrights © 2026