Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 10 No. 1 (2026): Article Research January 2026

Comparison of XGBoost and Naive Bayes Models in Type 2 Diabetes Prediction with RFE Feature Selection

Barus, Hanisa putri (Unknown)
Robet (Unknown)
Feriani Astuti Tarigan (Unknown)



Article Info

Publish Date
03 Jan 2026

Abstract

Type 2 diabetes mellitus is a chronic disease with an increasing prevalence rate that can cause serious complications if not detected early. The application of machine learning algorithms can aid prediction, but selecting the right model and features greatly determines the accuracy of the results. This study aims to compare the performance of the Extreme Gradient Boosting (XGBoost) and Naive Bayes algorithms in predicting type 2 diabetes with and without Recursive Feature Elimination (RFE) feature selection. The data used were from the UCI Machine Learning Repository, comprising 768 samples and eight clinical features. The research process included data preprocessing, dividing the data into 614 training data and 154 testing data, applying RFE to select the most influential features, model training, and evaluation using accuracy, precision, recall, F1-score, and AUC. The results show that Naive Bayes without RFE achieves 70.77% accuracy, 0.57377 precision, 0.648148 recall, F1-score 0.608696, and 0.772778 AUC, while Naive Bayes with RFE increases the accuracy to 74.02% and the AUC to 0.793333. Meanwhile, XGBoost with RFE provided the best results with an accuracy of 74.67%, precision of 0.653061, recall of 0.592593, F1-score of 0.621359, and the highest AUC of 0.804259. Besides, applying RFE also improves the computational efficiency. These findings indicate that applying RFE significantly improves classification and computation time performance. The practical implication is that this model could aid early detection of diabetes in clinical settings. Further research can be conducted by optimizing parameters and using more diverse datasets.

Copyrights © 2026






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...