Fish smoking is a widely used preservation method; however, the quality of smoked fish is highly dependent on the stability of temperature, humidity, and smoking duration. Manual control of these parameters has limitations and may reduce product quality. Existing studies on fish smoking monitoring systems primarily focus on temperature control without providing quantitative evaluation of how multi-parameter process stability affects product quality and shelf life. This study aims to design and implement an Internet of Things (IoT)-based monitoring system for fish smoking equipment to ensure the quality of smoked fish. The research method used is Research and Development (R&D), which includes needs analysis, system design, development, testing, and evaluation stages. The system integrates temperature and humidity sensors, a microcontroller, and an IoT platform for real-time monitoring. The test results show that the system is capable of monitoring the smoking chamber temperature within a range of 60–80 °C with an average error of ±1.5 °C compared to a standard measuring instrument, and maintaining an optimal temperature of 70 °C during the smoking process. Quality testing of the smoked fish indicates uniform doneness, a golden-brown color, firm texture, and an average moisture content reduction of 35%. Shelf-life testing shows that the smoked fish can last up to 7–10 days at room temperature and up to 21 days under cold storage without significant changes in aroma and texture. Unlike previous works, this study provides quantitative evidence that improved stability of multiple smoking parameters through IoT-based monitoring significantly enhances product quality consistency and extends the shelf life of smoked fish.
Copyrights © 2026