International Journal of Informatics and Communication Technology (IJ-ICT)
Vol 15, No 1: March 2026

Development of machine learning techniques for automatic modulation classification and performance analysis under AWGN and fading channels

Varna Kumar Reddy, P. G. (Unknown)
Meena, M. (Unknown)



Article Info

Publish Date
01 Mar 2026

Abstract

Automatic modulation classification (AMC) is essential in modern wireless communication for optimizing spectrum usage and adaptive signal processing. This study explores the use of various machine learning (ML) methods for AMC, focusing on their performance in additive white Gaussian noise (AWGN) and fading channels. This study evaluates of ML classifiers such as support vector machines (SVM), K-nearest neighbors (KNN), decision trees (DT), and ensemble methods with a dataset spanning signalto-noise ratios (SNRs) from -30 dB to +30 dB. Higher-order statistical features including moments and cumulants are used to train the classifiers for AMC. Performance is measured in terms of classification accuracy and computational efficiency across different SNR levels. The findings show that linear SVM, fine KNN, and fine trees consistently achieved high classification accuracy, even at low SNRs. From the analysis, it is observed that linear SVM and fine KNN achieve over 96% accuracy at 0 dB SNR. These classifiers demonstrate significant robustness, maintaining performance in challenging noise conditions. The research highlights the promise of ML techniques in improving AMC, providing a detailed comparison of classifiers and their strengths.

Copyrights © 2026






Journal Info

Abbrev

IJICT

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics and Communication Technology (IJ-ICT) is a common platform for publishing quality research paper as well as other intellectual outputs. This Journal is published by Institute of Advanced Engineering and Science (IAES) whose aims is to promote the dissemination of ...