Latar Belakang: Depresi menjadi isu krusial yang semakin sering dialami oleh mahasiswa akibat tekanan akademik, gaya hidup, dan tuntutan sosial. Deteksi dini sangat mendesak karena depresi yang tidak ditangani dapat berdampak buruk pada performa akademik, hubungan sosial, dan kualitas hidup mahasiswa. Tujuan: Penelitian ini bertujuan untuk membangun model prediksi risiko depresi yang akurat dan objektif pada mahasiswa dengan menggunakan algoritma Random Forest berbasis data akademik dan gaya hidup. Metode: Penelitian ini merupakan studi kuantitatif yang menerapkan metodologi Knowledge Discovery in Databases (KDD). Data yang digunakan adalah Student Depression Dataset dari Kaggle. Prosesnya meliputi preprocessing data, penyeimbangan data dengan SMOTEENN dan label encoding untuk mengubah data kategorikal menjadi numerik. Hasil: Model yang dikembangkan menunjukkan performa yang sangat tinggi pada saat diuji. Hasil evaluasi pada data uji menghasilkan nilai akurasi, precision, recall, dan f1-score yang seragam, yaitu sebesar 97%. Kesimpulan: Model Random Forest terbukti efektif untuk mendeteksi risiko depresi secara akurat dan seimbang. Model ini berpotensi menjadi alat bantu yang berharga bagi institusi pendidikan untuk melakukan intervensi preventif yang tepat sasaran. Penelitian selanjutnya dapat berfokus pada validasi model menggunakan data institusional di dunia nyata.
Copyrights © 2025