Jurnal Informatika & Teknologi Cerdas (JITC)
Vol 1 No 2 (2025): Jurnal Informatika & Teknologi Cerdas (JITC)

KNNDT Analisis Perbandingan Kinerja Model K-Nearest Neighbors dan Decision Tree untuk Prediksi Pengeluaran Nasabah

Shindy Yuliyatini (Unknown)
Olga Pangaribuan, Via (Unknown)
Nuur Bachtiar, Adnan (Unknown)



Article Info

Publish Date
27 Dec 2025

Abstract

Customer expenditure prediction is a crucial aspect of financial data analysis, helping banking institutions better understand consumer behavior. This study compares the performance of two machine learning algorithms, K-Nearest Neighbors (KNN) and Decision Tree, in predicting customer expenditures. The dataset used consists of 2,567 transaction records from a single customer at Bank BCA. The performance of both models is evaluated using three key metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The results show that the KNN algorithm outperforms the Decision Tree by producing lower prediction errors across all evaluation metrics, making it more effective for this predictive task.

Copyrights © 2025






Journal Info

Abbrev

jitc

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

Jurnal Informatika & Teknologi Cerdas (JITC) dikelola dan diterbitkan oleh Program Studi Teknik Informatika, Universitas Paramadina. Jurnal ini memuat artikel hasil penelitian di bidang ilmu komputer dan informatika, mencakup topik seperti pengembangan perangkat lunak, aplikasi multimedia, jaringan ...