International Journal of Advances in Applied Sciences
Vol 14, No 4: December 2025

Unveiling anomalies in industrial control systems: a kernel SHAP-based approach with temporal convolution autoencoder

Oswal, Sangeeta (Unknown)
Shinde, Subhash (Unknown)
Murli, Vijayalaksmi (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Industrial control systems (ICS) are often the target of cyber-attacks, leading to undesirable consequences. ICSs operate without human supervision, making them vulnerable to adversaries. In recent years, numerous deep learning-based solutions have demonstrated their efficiency in detecting anomalies in ICSs. However, there is a lack of ability to pinpoint the sensors and actuators that contributed to the anomaly. In this research work, we use kernel Shapley additive explanations (SHAP) to explain anomalies detected by a temporal convolution autoencoder (TCAE). The proposed TCAE model handles the long-term dependency effectively and is computationally effective on a large dataset. A comprehensive explanation is provided, focusing on the feature that contributed to the anomaly for each identified attack. The SHAP values are extracted for each identified attack and visually depict the feature that contributed to the anomaly for each attack, helping the expert to handle the attack and build user trust.

Copyrights © 2025






Journal Info

Abbrev

IJAAS

Publisher

Subject

Earth & Planetary Sciences Environmental Science Materials Science & Nanotechnology Mathematics Physics

Description

International Journal of Advances in Applied Sciences (IJAAS) is a peer-reviewed and open access journal dedicated to publish significant research findings in the field of applied and theoretical sciences. The journal is designed to serve researchers, developers, professionals, graduate students and ...