ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
Vol 14, No 1: Published January 2026

Enhancing Hazy Image Quality with a Modular CNN Encoder–Decoder

KHOLIQ, ANDIKA MUHAMMAD NUR (Unknown)
SATYAWAN, ARIEF SURYADI (Unknown)
HAQIQI, MOKH MIRZA ETNISA (Unknown)
AKBAR, FAJAR RAHMAT (Unknown)
NURROHMAH, IASYA FAIQOH (Unknown)
ADAWIYAH, AULIA (Unknown)
WULANDARI, ESTI FITRIA (Unknown)
SUGIAN, RENDI TRI (Unknown)



Article Info

Publish Date
28 Jan 2026

Abstract

This study develops a modular CNN encoder–decoder framework for single-image dehazing by replacing the conventional bottleneck with interchangeable token-mixing modules such as FNet, Spatial-FNet, MLP-Mixer, and gMLP-style designs. The pipeline integrates adaptive preprocessing (CLAHE and histogram matching), photometric augmentations, and training on a controlled subset of the SOTS dataset. Comprehensive quantitative and qualitative evaluations demonstrate substantial improvements over a baseline CNN, with mean PSNR increasing from approximately 18.4 dB to the 23.0–24.0 dB range and SSIM rising from about 0.75 to roughly 0.89–0.91. However, several variants require careful hyperparameter selection and loss-weight tuning to achieve stable performance. The results offer practical guidance for deployment in real-world vision systems.

Copyrights © 2026






Journal Info

Abbrev

elkomika

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal ELKOMIKA diterbitkan 3 (tiga) kali dalam satu tahun pada bulan Januari, Mei dan September. Jurnal ini berisi tulisan yang diangkat dari hasil penelitian dan kajian analisis di bidang ilmu pengetahuan dan teknologi, khususnya pada Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik ...