Journal of Applied Data Sciences
Vol 7, No 1: January 2026

Multiclass Skin Lesion Classification Algorithm using Attention-Based Vision Transformer with Metadata Fusion

Furqan, Mhd. (Unknown)
Katuk, Norliza (Unknown)
Hartama, Dedy (Unknown)



Article Info

Publish Date
19 Dec 2025

Abstract

Early and accurate classification of skin lesions is essential for timely diagnosis and treatment of skin cancer. This study presents a novel multiclass classification framework that integrates dermoscopic images with clinical metadata using an attention-based Vision Transformer (ViT) architecture. The proposed model incorporates a mutual-attention fusion mechanism to jointly learn from visual and tabular inputs, augmented by a class-aware metadata encoder and imbalance-sensitive loss function. Training was conducted using the HAM10000 dataset over 30 epochs with a batch size of 32, utilizing the Adam optimizer and a learning rate of 0.0001. The model demonstrated superior performance compared to a ViT Baseline, achieving 93.4% accuracy, 92.2% F1-score, 0.95 AUC, and significant reductions in MAE and RMSE. Additionally, Grad-CAM visualizations confirmed the model’s ability to focus on diagnostically relevant regions, enhancing interpretability. These findings suggest that the integration of structured clinical information with transformer-based visual analysis can significantly improve classification robustness, particularly in underrepresented lesion types. However, the model’s current performance is evaluated only on the HAM10000 dataset, and its generalizability to other clinical or non-dermoscopic image sources remains to be validated. Future studies should therefore explore multi-institutional datasets and real-world deployment scenarios to assess robustness and scalability. The proposed framework offers a practical, interpretable solution for AI-assisted skin lesion diagnosis and demonstrates strong potential for clinical deployment.

Copyrights © 2026






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...