Jurnal Komputer dan Teknologi (JUKOMTEK)
Vol 5 No 1 (2026): JUKOMTEK JANUARI 2026

KLASIFIKASI JENIS PENYAKIT BUAH MANGGA BERBASIS DEEP LEARNING MENGGUNAKAN ARSITEKTUR RESNET DAN MOBILENET

Cornelis Rasyid, Nanda (Unknown)
Karman, Joni (Unknown)
Toyib Hidayat, Asep (Unknown)
Lingga Wijaya, Harma Oktavia (Unknown)



Article Info

Publish Date
05 Jan 2026

Abstract

Mango plantations in Indonesia face significant challenges due to pests and diseases that reduce productivity and cause economic losses for farmers. Manual identification of these issues requires expert knowledge and is often time-consuming and inaccurate. This study aims to develop a classification system for detecting various mango leaf diseases using deep learning models, specifically ResNet and MobileNet architectures. Deep learning, particularly Convolutional Neural Networks (CNNs), enables automatic disease detection from plant images by learning patterns without explicit programming. The proposed system focuses on identifying common diseases such as leaf blight, whiteflies, and leaf caterpillars efficiently and accurately. By leveraging image-based recognition, the system allows for early diagnosis and timely intervention. The results of this research are expected to provide a technological solution that supports modern agriculture and empowers farmers with better disease management tools.

Copyrights © 2026






Journal Info

Abbrev

jukomtek

Publisher

Subject

Computer Science & IT Library & Information Science

Description

Jurnal Komputer dan Teknologi (JUKOMTEK) e-ISSN 2961-9009 dan p-ISSN 2963-1289 merupakan jurnal ilmiah. Jurnal ini berisi tentang karya ilmiah bersifat open access, dan jurnal ilmiah nasional yang mempublikasikan artikel ilmiah hasil penelitian dalam ruang lingkup bidang ilmu komputer serta aplikasi ...