Jurnal Matematika UNAND
Vol. 15 No. 1 (2026)

CLASSIFICATION OF GENDER INEQUALITY IN INDONESIA: UNSUPERVISED AND SUPERVISED LEARNING APPROACHES

Nurhidayati, Maulida (Unknown)
Yunaita Rahmawati (Unknown)
Ajeng Wahyuni (Unknown)



Article Info

Publish Date
26 Jan 2026

Abstract

Gender inequality in Indonesia is a multidimensional problem that has a wide impact on human development. This study aims to model and classify the level of gender inequality between provinces in Indonesia with a combined approach of unsupervised and supervised learning. Secondary data from 38 provinces in 2024 were analyzed using five methods: K-Means, Self-Organizing Map (SOM), hybrid SOM-KMeans, Support Vector Machine (SVM), and Logistic Regression. In the unsupervised approach, the SOM and SOM-KMeans methods show better cluster coherence than K-Means. In the supervised approach, the SVM method provides better classification performance compared to logistic regression. Overall, SVM was obtained with the highest accuracy, which was 89.47%, surpassing other methods. This research makes a methodological contribution to the use of machine learning for spatial-based gender inequality risk mapping, as well as implications for more precise and adaptive data-based policymaking.

Copyrights © 2026






Journal Info

Abbrev

jmua

Publisher

Subject

Computer Science & IT Mathematics

Description

Fokus dan Lingkup dari Jurnal Matematika FMIPA Unand meliputi topik-topik dalam Matematika sebagai berikut : Analisis dan Geometri Aljabar Matematika Terapan Matematika Kombinatorika Statistika dan Teori ...