Makanan Bergizi Gratis (MBG) program is a strategic initiative of the Indonesian government to improve the nutritional quality of schoolchildren. This research seeks to examine public sentiment regarding the MBG program by leveraging 10,000 tweets obtained from Kaggle. The method used combines Natural Language Processing (NLP) and Machine Learning approaches, several algorithms such as Logistic Regression, Support Vector Machine (SVM), Random Forest, Naive Bayes, XGBoost, and LightGBM were tested to compare classification performance. The dataset contains a collection of public reviews categorized into three sentiment classes: positive, negative, and neutral. The analysis process includes text cleaning, tokenization, stopword removal, and stemming to obtain a cleaner text representation. Text features were then extracted using the Term Frequency–Inverse Document Frequency (TF-IDF) method. The results showed that the Logistic Regression 97% with an F1-score of 0.9552 models showed the most optimal performance. Sentiment analysis revealed 65% positive responses, 25% neutral, and 10% negative, with the dominant keywords being “nutrisi,” “sehat,” “anak sekolah,” and “gratis.” The results visualization, in the form of a Word Cloud and a bar chart, indicate that public opinion tends to be positive towards the implementation of the MBG program, particularly regarding improving the nutrition of schoolchildren. This research is expected to provide input for policymakers in evaluating public perceptions of the implementation of food-based social programs.
Copyrights © 2026