Bulletin of Computer Science Research
Vol. 6 No. 1 (2025): December 2025

Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pada Komentar Bitcoin Di Aplikasi X

Yaskur Bearly Fernandes (Unknown)
Elin Haerani (Unknown)
Fadhilah Syafria (Unknown)
Muhammad Fikry (Unknown)
Lola Oktavia (Unknown)



Article Info

Publish Date
27 Dec 2025

Abstract

Social media has become a primary medium for users to express opinions, including those related to Bitcoin, whose fluctuating value often triggers diverse public responses. The large volume of unstructured comments makes manual sentiment analysis inefficient, thereby necessitating an automated approach based on machine learning. This study aims to classify positive and negative sentiments in Bitcoin-related comments on the X platform using the Support Vector Machine (SVM) algorithm with Term Frequency–Inverse Document Frequency (TF-IDF) feature weighting. The dataset consists of 1,750 Indonesian-language comments labeled by three annotators. The data were processed through several preprocessing stages, including case folding, text cleaning, tokenization, stopword removal, and stemming. Model evaluation was conducted using four data split ratios, namely 90:10, 80:20, 70:30, and 60:40. The experimental results indicate that the 90:10 ratio achieved the best performance, with an accuracy of 72.57%, precision of 0.75, recall of 0.73, and an F1-score of 0.67. The SVM model demonstrates strong performance in identifying positive sentiments; however, it is less effective in detecting negative sentiments due to class imbalance in the dataset. As an additional experiment, testing was performed using a balanced dataset obtained through an undersampling process and several SVM kernel types for comparison. The results show that using a balanced dataset leads to more evenly distributed classification performance across sentiment classes, while the linear kernel provides the most stable performance compared to other kernels. Overall, SVM with TF-IDF weighting proves to be an effective approach for sentiment analysis of Bitcoin-related comments on social media.

Copyrights © 2025






Journal Info

Abbrev

bulletincsr

Publisher

Subject

Computer Science & IT

Description

Bulletin of Computer Science Research covers the whole spectrum of Computer Science, which includes, but is not limited to : • Artificial Immune Systems, Ant Colonies, and Swarm Intelligence • Bayesian Networks and Probabilistic Reasoning • Biologically Inspired Intelligence • Brain-Computer ...