Social media has become a primary medium for users to express opinions, including those related to Bitcoin, whose fluctuating value often triggers diverse public responses. The large volume of unstructured comments makes manual sentiment analysis inefficient, thereby necessitating an automated approach based on machine learning. This study aims to classify positive and negative sentiments in Bitcoin-related comments on the X platform using the Support Vector Machine (SVM) algorithm with Term Frequency–Inverse Document Frequency (TF-IDF) feature weighting. The dataset consists of 1,750 Indonesian-language comments labeled by three annotators. The data were processed through several preprocessing stages, including case folding, text cleaning, tokenization, stopword removal, and stemming. Model evaluation was conducted using four data split ratios, namely 90:10, 80:20, 70:30, and 60:40. The experimental results indicate that the 90:10 ratio achieved the best performance, with an accuracy of 72.57%, precision of 0.75, recall of 0.73, and an F1-score of 0.67. The SVM model demonstrates strong performance in identifying positive sentiments; however, it is less effective in detecting negative sentiments due to class imbalance in the dataset. As an additional experiment, testing was performed using a balanced dataset obtained through an undersampling process and several SVM kernel types for comparison. The results show that using a balanced dataset leads to more evenly distributed classification performance across sentiment classes, while the linear kernel provides the most stable performance compared to other kernels. Overall, SVM with TF-IDF weighting proves to be an effective approach for sentiment analysis of Bitcoin-related comments on social media.
Copyrights © 2025