IJIIS: International Journal of Informatics and Information Systems
Vol 8, No 4: Regular Issue: December 2025

Predicting Demand for MSME Products Using Artificial Neural Networks (ANN) Based on Historical Sales Data

Endahti, Les (Unknown)
Faturahman, Muhammad Shihab (Unknown)



Article Info

Publish Date
24 Dec 2025

Abstract

Accurate demand forecasting plays a crucial role in supporting inventory and sales strategies, particularly for Micro, Small, and Medium Enterprises (MSMEs) that often face resource constraints. This study aims to develop a predictive model using Artificial Neural Networks (ANN) to forecast product demand based on historical sales data. The ANN model is trained and evaluated using a structured experimental approach, adjusting parameters such as the number of hidden layers, learning rate, and epochs to identify the best-performing architecture. Evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R²) are used to measure model performance. The results demonstrate that the ANN model is capable of capturing complex nonlinear relationships in multidimensional data and producing accurate demand forecasts. The model particularly performs well in predicting demand trends for products in the Electronics and Household categories. These findings provide valuable insights for MSME stakeholders in optimizing inventory planning and making data-driven business decisions.

Copyrights © 2025






Journal Info

Abbrev

IJIIS

Publisher

Subject

Computer Science & IT

Description

The IJIIS is an international journal that aims to encourage comprehensive, multi-specialty informatics and information systems. The Journal publishes original research articles and review articles. It is an open access journal, with free access for each visitor (ijiis.org/index.php/IJIIS/); ...