Jurnal Informatika Kaputama (JIK)
Vol 10 No 1 (2026): Volume 10, Nomor 1, Januari 2026

Perbandingan Algoritma Random Forest, SVM, dan Naïve Bayes dalam Analisis Sentimen Ulasan Spotify di Play Store Berbasis SMOTE

Lasuci Prastia, Anjas (Unknown)
Asra, Taufik (Unknown)



Article Info

Publish Date
01 Jan 2026

Abstract

Kemajuan teknologi informasi sudah mendukung pemanfaatan aplikasi mobile secara masif, yang di dalamnya adalah bidang hiburan digital seperti Spotify. Tanggapan pemakaian atas aplikasi ini di Google Play Store mencerminkan opini yang dapat diuraikan untuk mengevaluasi kepuasan konsumen. Di antara pendekatan yang digunakan adalah analisis sentimen, namun mekanisme klasifikasi sering terkendala oleh ketidakseimbangan data. Pengkajian ini bermaksud guna mengetahui bentuk algoritma mana yang paling akurat dalam mengklasifikasikan sentimen pengguna terhadap aplikasi Spotify, yaitu antara algoritma Random Forest, Support Vector Machine (SVM), dan Naïve Bayes. Metode penelitian meliputi pengumpulan data, pelabelan, preprocessing, pembagian data, penyeimbangan data menggunakan teknik SMOTE, pemodelan algoritma, dan evaluasi performa. Hasil evaluasi menerangkan bahwa algoritma SVM memberikan kinerja terbaik pada akurasi 85,10% dan nilai AUC 0,91. Hal ini membuktikan bahwa SVM lebih unggul dibandingkan algoritma lainnya dalam mengategorikan sentimen tanggapan aplikasi Spotify.

Copyrights © 2026






Journal Info

Abbrev

JIK

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Jurnal Informatika Kaputama adalah jurnal resmi STMIK kaputama dalam bentuk bunga rampai untuk menyajikan tulisan ilmiah berbagai disiplin ilmu pengetahuan yang ada hubungan atau keterikatan dengan ilmu komputer berupa hasil penelitian lapangan atau laboratorium maupun studi pustaka. Adapun fokus ...