JTIK (Jurnal Teknik Informatika Kaputama)
Vol. 10 No. 1 (2026): Volume 10, Nomor 1, Januari 2026

ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI LALAMOVE MENGGUNAKAN NAÏVE BAYES, SUPPORT VECTOR MACHINE, DAN RANDOM FOREST

Riyana, Sigit (Unknown)



Article Info

Publish Date
01 Jan 2026

Abstract

Lalamove is a widely used application-based logistics service in Indonesia, and user reviews on the Google Play Store provide essential insights into users’ experiences and perceptions of the platform. This study applies Natural Language Processing (NLP) techniques and machine learning algorithms to process thousands of reviews efficiently and consistently. The textual data were cleaned, normalized, and converted into numerical representations using the TF-IDF method. Three classification models—Naïve Bayes, Support Vector Machine (SVM), and Random Forest—were implemented to determine sentiment tendencies. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The findings reveal notable differences in the ability of each algorithm to recognize textual patterns, and the results can be utilized as a reference for improving the quality of Lalamove’s services based on user feedback.

Copyrights © 2026






Journal Info

Abbrev

JTIK

Publisher

Subject

Computer Science & IT

Description

JTIK (Jurnal Teknik Informatika Kaputama) diterbitkan oleh Program Studi Teknik Informatika Kaputama sebagai media untuk menyalurkan pemahaman tentang aspek-aspek sistem informasi berupa hasil penelitian lapangan, laboratorium dan studi pustaka. Jurnal ini Terbit 2x setahun yaitu bulan januari dan ...