Building of Informatics, Technology and Science
Vol 7 No 3 (2025): December 2025

Analisis Sentimen Terhadap Ulasan Google Play Store Aplikasi Lazada, Shopee, dan Tokopedia Menggunakan Algoritma IndoBERT

Aisy, Afra Rihadatul (Unknown)
Karyono, Giat (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

The growth of e-commerce has generated many user reviews, which are an important source for understanding consumer satisfaction and perceptions. However, manual analysis of unstructured reviews that use informal language is ineffective. In addition, conventional sentiment analysis approaches are often unable to capture the linguistic variations of the Indonesian language. This study uses the IndoBERT contextual language model to classify the sentiment of e-commerce application reviews on Shopee, Tokopedia, and Lazada. Data was collected through web scraping, amounting to 12,000 data points, with 4,000 for each application, labeled based on ratings, processed through preprocessing stages, balanced using Random Oversampling, and trained for three-class sentiment classification. The evaluation showed an Macro F1-Score of 0.90, indicating strong performance across all sentiment classes, including minority classes. These results confirm the effectiveness of IndoBERT in handling data imbalance in Indonesian sentiment analysis.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...