Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Vol. 15 No. 3 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)

Analisis Sentimen Ulasan Pemain Genshin Impact Menggunakan Kombinasi TF-IDF, Lexicon, dan Support Vector Machine

Sulistyo, Danang Arbian (Unknown)
Fahrudillah, Mochammad Fiqi (Unknown)



Article Info

Publish Date
09 Jan 2026

Abstract

The rapid growth of the digital gaming industry in Indonesia has been accompanied by a significant increase in user-generated reviews on distribution platforms such as Google Play Store. This condition necessitates automated methods capable of efficiently interpreting player perceptions on a scale. This study conducts sentiment analysis on player reviews of Genshin Impact by developing a seven-stage analytical pipeline consisting of data preparation, lexicon-based labeling, TF-IDF feature extraction, Support Vector Machine (SVM) training, multi-metric evaluation, rule-based post-processing, and automated summarization using a Large Language Model. A total of 40,000 reviews from 2023 until 2025 were collected through web scraping and processed through text cleaning, slang normalization, tokenization, stopword removal, and stemming. Initial labels were generated using an updated domain-specific sentiment lexicon and subsequently refined through a rule-patch mechanism that handles negation, contrastive expressions, and domain-specific technical cues such as lag, bug, and crash. The SVM model was trained using a TF-IDF configuration (1–3 grams) and evaluated across 10 runs with different random seeds, producing an average accuracy of 0.945, a macro-F1 of 0.900, and stable performance across iterations. Visualization of sentiment distribution and WordClouds highlights prominent thematic patterns within each class, while automated summarization using IBM Granite provides qualitative insights into player appreciation of visual and character design, alongside complaints related to performance issues and the game’s gacha system. Overall, the integration of statistical, rule-based, and LLM-driven approaches demonstrates an effective and contextually robust framework for sentiment analysis in game analytics

Copyrights © 2025






Journal Info

Abbrev

JIK

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) is expected to be a media of scientific study of research result, a thought and a study criticial analysis to a System engineering research, Informatics Engineering, Information Technology, Computer Engineering, Informatics Management, and ...