Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Vol. 15 No. 3 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)

Prediksi Dropout Mahasiswa: Early-Warning Berbasis Enrollment dengan Machine Learning

putra, Febri andika (Unknown)
Mirajdandi, Syahisro (Unknown)
Nandra (Unknown)
Okmarizal, Bisma (Unknown)
Mulyanda, Sandy (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

Dropout among university students remains a major challenge in higher education because it affects study continuity, institutional performance, and the efficiency of academic service planning. This study develops a machine learning–based Early Warning System (EWS) that leverages data available at enrollment and is updated after the first semester. Using the public dataset “Predict Students’ Dropout and Academic Success” (n = 4,424), the original three-class outcome (Dropout, Enrolled, Graduate) is simplified into a binary target, with dropout treated as the positive class. Two feature scenarios are evaluated: (1) enrollment-only for pre-entry screening and (2) enrollment plus first-semester indicators to update risk scores. Three models are compared: class-balanced Logistic Regression, class-balanced Random Forest, and Gradient Boosting. Model performance is assessed using accuracy, precision/recall/F1score for the dropout class, balanced accuracy, and ROC-AUC. Under the enrollment-only setting, Logistic Regression achieves the best early-warning performance (recall = 0.697; F1 score = 0.651). After incorporating first-semester features, performance improves (recall = 0.792; F1score = 0.779). Beyond model comparison, this study adds an operational perspective through confusion-matrix simulation and probability-threshold analysis to balance missed at-risk cases and follow-up workload.

Copyrights © 2025






Journal Info

Abbrev

JIK

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) is expected to be a media of scientific study of research result, a thought and a study criticial analysis to a System engineering research, Informatics Engineering, Information Technology, Computer Engineering, Informatics Management, and ...