JSAI (Journal Scientific and Applied Informatics)
Vol 9 No 1 (2026): Januari

Prediksi Potensi Banjir Menggunakan Machine Learning Dengan Pendekatan XGBoost Dan Logistic Regression

Nurita Evitarina (Unknown)
Fitriyanti, Fitriyanti (Unknown)
Utami, Tri Dewi Yuni (Unknown)



Article Info

Publish Date
20 Jan 2026

Abstract

Flooding is one of the most frequent natural disasters in Indonesia, causing significant material losses and casualties. This study aims to develop a flood potential prediction model based on weather data using machine learning approaches, namely XGBoost and Logistic Regression. The dataset consists of 1,513,505 weather records with 1,165 flood events (0.077%). The features include temperature, humidity, wind speed and direction, weather codes, and temporal features generated using a sliding window approach for H-1, H-2, and H-3. Data imbalance was addressed using a combination of stratified undersampling and SMOTE, changing the class ratio from 1:1,298 to 1:3.3. Experimental results show that XGBoost outperforms Logistic Regression, achieving an accuracy of 98.40%, precision of 97.93%, recall of 95.07%, and an ROC-AUC of 99.38%, while Logistic Regression achieved an accuracy of 62.77%. Feature importance analysis indicates that weather codes at H-3 and H-1 are the most influential predictors. With a low false negative rate of 4.9%, the proposed XGBoost model is considered reliable for implementation as a flood early warning system.

Copyrights © 2026






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...