Pengenalan wajah merupakan teknologi penting dalam biometric authentication untuk sistem keamanan dan identifikasi otomatis, namun metode tradisional masih terkendala oleh variasi pose dan pencahayaan. Penelitian ini bertujuan untuk mengembangkan dan mengintegrasikan arsitektur YOLOv8 sebagai face detector dan Convolutional Neural Network (CNN) sebagai face recognizer ke dalam satu pipeline end-to-end yang efisien. Metodologi yang digunakan melibatkan penggunaan YOLOv8 untuk deteksi dan lokalisasi wajah secara real-time, diikuti proses cropping serta alignment, dan diakhiri dengan klasifikasi identitas menggunakan model CNN berbasis transfer learning. Dataset yang digunakan mencakup 38 individu dengan total 380 citra yang dilatih menggunakan GPU NVIDIA GTX 1070. Hasil penelitian menunjukkan bahwa YOLOv8 mencapai performa sangat baik dengan nilai mean Average Precision (mAP@0.5) sebesar 0,972 dan waktu inferensi hanya 12,5 ms per frame. Sementara itu, model CNN berhasil mencapai akurasi pengujian sebesar 93,8% dengan F1-Score 0,93. Meskipun sistem mengalami penurunan performa pada kondisi pencahayaan rendah (low light) dan oklusi, integrasi kedua model ini terbukti tangguh dan layak diimplementasikan untuk aplikasi praktis seperti kontrol akses dan sistem kehadiran otomatis secara real-time. Pengembangan lanjutan disarankan untuk meningkatkan ketahanan model terhadap pose ekstrem dan hambatan visual yang berat.
Copyrights © 2025