Water quality is a key indicator of a community’s health and welfare, yet it has deteriorated significantly due to pollution caused by human activities. This study aimed to evaluate Geographically Weighted Logistic Regression’s (GWLR) ability to handle spatial nonstationarity in the relationship between explanatory factors and water quality status in Pontianak City, and to compare its performance with logistic regression. Three modelling approaches were applied to classify water as polluted or non-polluted: (i) logistic regression with spatially invariant) parameters; (ii) GWLR with a fixed Gaussian kernel, producing spatially varying parameters using a fixed bandwidth; and (iii) GWLR with an adaptive Gaussian kernel, producing spatially varying parameters using an adaptive bandwidth. Model performance was compared using Akaike’s Information Criterion (AIC) and classification accuracy. The GWLR model with a fixed Gaussian kernel produced an AIC of 22.52, whereas the logistic regression model produced a slightly lower AIC of 22.39; both models achieved a classification accuracy of 92.86%, with the adaptive-kernel GWLR showing comparable classification performance. These results indicate that, for the parameter settings considered, GWLR offered performance comparable to, but not substantially better than logistic regression for modelling the factors affecting water quality, despite its capacity to address spatial nonstationarity.
Copyrights © 2025