Masalah gizi tetap menjadi perhatian utama kesehatan masyarakat di banyak negara, termasuk Indonesia. Studi ini merancang dan mengevaluasi sistem klasifikasi otomatis untuk status gizi balita berdasarkan indikator berat badan terhadap tinggi badan menggunakan algoritma XGBoost. Dataset terdiri dari 1.763 anak Indonesia berusia 24–60 bulan, dengan status gizi dikategorikan menjadi enam kelas (gizi baik, risiko gizi lebih, gizi kurang, gizi buruk, gizi lebih, obesitas). Variabel prediktor meliputi jenis kelamin, usia dalam bulan, berat badan, tinggi badan, dan skor Z berat badan terhadap tinggi badan. Praproses meliputi pembersihan data, penghapusan duplikat, pengkodean label, standardisasi, dan pembagian data latih-uji 80:20. Model XGBoost dasar dibandingkan dengan model yang disetel menggunakan GridSearch dengan validasi silang 3-fold dan 10-fold. Kinerja dievaluasi menggunakan akurasi, presisi makro, recall makro, skor F1 makro, dan log loss. Model terbaik, XGBoost dengan GridSearch 10-fold, mencapai akurasi 0,8689, skor F1 0,8149, dan log loss 0,3395, lebih baik daripada log loss dasar sebesar 0,4190. Temuan ini menunjukkan bahwa penyetelan hyperparameter XGBoost dengan GridSearch menghasilkan prediksi probabilistik yang terkalibrasi dengan baik dan merupakan alat pendukung keputusan yang menjanjikan untuk deteksi dini kekurangan gizi dan obesitas pada balita di fasilitas perawatan kesehatan primer.
Copyrights © 2025