Jurnal Informatika dan Teknik Elektro Terapan
Vol. 14 No. 1 (2026)

KLASIFIKASI PENYAKIT KULIT WAJAH MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK EFFICIENTNET-B3:

Riko Angga Bayu Kusuma (Unknown)
Bambang Irawan (Unknown)
Abdul Khamid (Unknown)



Article Info

Publish Date
17 Jan 2026

Abstract

Facial skin diseases are a common health issue that significantly affect an individual's quality of life. Early detection through image processing is a crucial step for timely treatment. This study applies Convolutional Neural Network with EfficientNet-B3 architecture to classify five types of facial skin diseases, namely acne, actinic keratosis, basal cell carcinoma, eczema, and rosacea. The model was developed through fine-tuning on an augmented image dataset, with training and testing data splits. Evaluation results show a testing accuracy of 96.61 percent, accompanied by average precision, recall, and F1-score values of 0.97. The confusion matrix indicates high classification performance with minimal errors between classes. This approach proves effective in improving detection accuracy, thus potentially supporting medical personnel in early diagnosis.

Copyrights © 2026






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...