Jurnal Informatika dan Teknik Elektro Terapan
Vol. 14 No. 1 (2026)

SISTEM REKOMENDASI METADATA LAGU BERDASARKAN DETEKSI EMOSI WAJAH MENGGUNAKAN VIT-B/16

Nurrofiq, Ainan Zaky (Unknown)
Bambang Irawan (Unknown)



Article Info

Publish Date
17 Jan 2026

Abstract

This study presents a music metadata recommendation system based on facial emotion detection using the Vision Transformer (ViT-B/16) model. The system classifies user emotions into seven categories using the KDEF facial dataset and matches them with music metadata (title, artist, genre, mood) labeled with corresponding emotional tags. The ViT-B/16 model was trained using transfer learning and evaluated with accuracy, precision, recall, and F1-score. The model achieved an accuracy of 89% and an average F1-score of 0.89. The recommendation system was assessed by 30 participants, with 87% indicating that the suggested song metadata matched the detected emotion. The system offers real-time emotion recognition and automatic mood-based song suggestions. However, classification accuracy for visually similar emotions such as “fear” and “angry” remains a challenge. Future development may include audio and lyric analysis, as well as user preference integration, to enhance recommendation relevance.

Copyrights © 2026






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...