JURTEKSI
Vol. 12 No. 1 (2025): Desember 2025

MULTI-FACE EMOTION DETECTION USING CONVOLUTIONAL NEURAL NETWORKS TINY FACE DETECTOR

Istioso, Jason (Unknown)
Gerard, Jeremiah (Unknown)
Marcheleno, Marco (Unknown)
Maulana, Muhammad Akbar (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

Abstract: Understanding students’ emotional conditions is important for evaluating engagement and learning atmosphere in classroom environments. However, conventional evaluation methods are often subjective and difficult to apply in real time. Therefore, this study proposes a real-time multi-face emotion detection system designed for classroom learning environments. The system integrates a CNN-based Tiny Face Detector for multi-scale face localization with a convolutional neural network to classify seven facial emotions: angry, disgust, fear, happy, sad, surprise, and neutral. Experimental evaluation was conducted using classroom video data under varying lighting conditions, face orientations, partial occlusions, and different numbers of detected faces per frame. The proposed system achieves stable real-time performance with processing speeds ranging from 10–20 FPS, depending on face density. The results show higher recognition performance for expressive emotions, while subtle emotions remain more challenging. Overall classification accuracy reaches above 80% when emotion predictions are aggregated across multiple faces and time windows. These results indicate that the proposed system is suitable for objective analysis of emotional dynamics in classroom environments and supports the deployment of lightweight emotion-aware monitoring systems for educational applications. Keywords: classroom monitoring; convolutional neural network; facial emotion recognition; multi-face detection; tiny face detector. Abstrak: Pemahaman terhadap kondisi emosional mahasiswa penting untuk mengevaluasi keterlibatan dan suasana pembelajaran di kelas. Namun, metode evaluasi konvensional umumnya bersifat subjektif dan sulit diterapkan secara real-time. Oleh karena itu, penelitian ini mengusulkan sistem deteksi emosi multi-wajah secara real-time yang dirancang untuk lingkungan pembelajaran di kelas. Sistem mengintegrasikan Tiny Face Detector berbasis CNN untuk pelokalan wajah multi-skala dengan jaringan saraf konvolusional untuk mengklasifikasikan tujuh emosi wajah, yaitu marah, jijik, takut, senang, sedih, terkejut, dan netral. Evaluasi eksperimen dilakukan menggunakan data video kelas dengan variasi kondisi pencahayaan, orientasi wajah, oklusi parsial, serta jumlah wajah yang berbeda dalam satu frame. Sistem menunjukkan kinerja real-time yang stabil dengan kecepatan pemrosesan antara 10–20 FPS, bergantung pada kepadatan wajah. Hasil pengujian menunjukkan kinerja yang lebih baik pada emosi ekspresif, sementara emosi dengan ciri halus lebih menantang untuk dikenali. Akurasi klasifikasi keseluruhan mencapai di atas 80% ketika hasil emosi diagregasi berdasarkan banyak wajah dan interval waktu. Hasil ini menunjukkan bahwa sistem yang diusulkan berpotensi digunakan untuk analisis objektif dinamika emosi di kelas serta mendukung pemantauan lingkungan pembelajaran berbasis kecerdasan buatan. Kata kunci: pengenalan emosi wajah; deteksi multi-wajah; Tiny Face Detector; jaringan saraf konvolusional; pemantauan kelas.

Copyrights © 2025






Journal Info

Abbrev

jurteksi

Publisher

Subject

Computer Science & IT

Description

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer ...