Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi)
Vol 9 No 1 (2025): SISFOTEK IX 2025

Analisis Sentimen Ulasan Pengguna Aplikasi Grab di Google Play Store Menggunakan Pendekatan Machine Learning dan Deep Learning

Muhammad Azzukhruf (Unknown)
Firman Hidayat (Unknown)
Muhammad Haikal (Unknown)
Pratama Oktavianus (Unknown)



Article Info

Publish Date
23 Jan 2026

Abstract

This study presents a sentiment analysis of user reviews for the Grab application on Google Play Store using both machine learning and deep learning approaches. The objective is to compare the performance of four algorithms—Random Forest, XGBoost, BiLSTM, and IndoBERT—in classifying positive, negative, and neutral sentiments in Indonesian-language texts. The dataset consists of 2,000 user reviews collected through web scraping, followed by preprocessing steps such as case folding, stopword removal, and tokenization. Feature representation was conducted using TF-IDF for machine learning models and word embeddings for deep learning models. The experimental results using 5-fold cross-validation show that IndoBERT achieved the highest accuracy of 91%, followed by Random Forest (88%), XGBoost (88%), and BiLSTM (84%). These results indicate that IndoBERT demonstrates superior capability in capturing the semantic context of Indonesian text, making it the most effective model for sentiment analysis of mobile application reviews written in the Indonesian language.

Copyrights © 2025






Journal Info

Abbrev

SISFOTEK

Publisher

Subject

Computer Science & IT

Description

Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK) merupakan ajang pertemuan ilmiah, sarana diskusi dan publikasi hasil penelitian maupun penerapan teknologi terkini dari para praktisi, peneliti, akademisi dan umum di bidang sistem informasi dan teknologi dalam artian ...