This study discusses the application of Aspect-Based Sentiment Analysis (ABSA) combined with the K-Means Clustering algorithm to analyze student thesis report data. The research scope includes text data processing from VAK (Visual, Auditory, Kinesthetic) learning style questionnaires to identify research aspects and automatically group thesis themes. The objective is to obtain a structured and representative mapping of students’ research themes based on their fields of study. The methodology involves several stages, including text preprocessing, TF-IDF weighting, aspect extraction using ABSA, and clustering with K-Means, validated through the Davies-Bouldin Index (DBI). The dataset consists of 976 textual entries derived from student questionnaire responses. The results indicate that the optimal cluster is achieved at k = 3 with a DBI value of 3.276, forming three main groups: (1) data mining, (2) statistical analysis, and (3) learning technology. The study concludes that the combination of ABSA and K-Means is effective in accurately classifying research themes and provides an analytical foundation for academic decision-making regarding student research trends.
Copyrights © 2025