Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi)
Vol 9 No 1 (2025): SISFOTEK IX 2025

Predictive Maintenance pada Kapal Tanker Mid-Range Menggunakan Machine Learning (XGBoost Algorithm)

Meschac Timothee Silalahi (Unknown)
Veryawan Nanda Perkasa (Unknown)
Ita Wijayanti (Unknown)
Hanifah Widiastuti (Unknown)



Article Info

Publish Date
24 Jan 2026

Abstract

This study develops a machine learning-based predictive maintenance model for chemical tankers with capacities of 11,000–25,000 DWT using synthetic log-book data representing manual engine-room records without additional sensors. The XGBoost model predicts potential system failures within 14 days, achieving an Area Under Curve (AUC) of 0.9, recall of 0.82, and precision of 0.87. SHAP interpretability analysis identifies exhaust gas temperature differentials between cylinders, scavenge air pressure, and iron content in lubricating oil as the most influential predictors of failure. Implementation of the predictive system improves Mean Time Between Failure (MTBF) by 25.5% and system availability from 94.6% to 97.8%. Economic evaluation yields a Net Present Value (NPV) of USD 2.45 million per vessel with a Payback Period of 11 months. The findings confirm the reliability of machine learning-based predictive maintenance using operational data without expensive sensor infrastructure, supporting both efficiency gains and digital transformation within the maritime industry.

Copyrights © 2025






Journal Info

Abbrev

SISFOTEK

Publisher

Subject

Computer Science & IT

Description

Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK) merupakan ajang pertemuan ilmiah, sarana diskusi dan publikasi hasil penelitian maupun penerapan teknologi terkini dari para praktisi, peneliti, akademisi dan umum di bidang sistem informasi dan teknologi dalam artian ...