Machine learning is one of the potential solutions towards optimizing the security strength towards identifying complex forms of threats in internet of things (IoT). However, a review of existing machine learning-based approaches showcases their sub-optimal performance when exposed to dynamic forms of unseen threats without any a priori information during the training stage. Hence, this manuscript presents a novel machine-learning framework towards potential threat detection capable of identifying the underlying patterns of rapidly evolving threats. The proposed system uses a neural network-based learning model emphasizing representation learning where an explicit masked indexing mechanism is presented for high-level security against unknown and dynamic adversaries. The benchmarked outcome of the study shows to accomplish 11% maximized threat detection accuracy and 33% minimized algorithm processing time.
Copyrights © 2025