International Journal of Artificial Intelligence Research
Vol 9, No 2 (2025): December

Evaluation Of A Feature-Concatenated Model For Multiclass Diagnosis Of Pulmonary Diseases on An Imbalanced Dataset

Ajitomo, Wahyu (Unknown)
Tyas, Dyah Aruming (Unknown)
Harjoko, Agus (Unknown)



Article Info

Publish Date
30 Dec 2025

Abstract

Lung diseases such as pneumonia, tuberculosis, and COVID-19 pose serious global health challenges, particularly in X-ray image classification where class distribution is often imbalanced. To address this issue, this study proposes a hybrid model based on concatenated CNN architectures and applies class weighting using focal loss multiclass. The dataset consists of 7,135 X-ray images divided into four main classes: pneumonia, tuberculosis, COVID-19, and normal. Focal loss with a gamma parameter of 2.0 is employed to enhance the model’s focus on minority classes. Evaluation results show that combined models such as DenseNet121 + VGG16 and VGG16 + ResNet50 achieve F1-scores of up to 0.87, outperforming single models. Grad-CAM visualizations also indicate that the combined models can recognize pathological areas more comprehensively and accurately. This approach proves effective in improving the accuracy and sensitivity of AI-based diagnostic systems.

Copyrights © 2025






Journal Info

Abbrev

IJAIR

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal Of Artificial Intelligence Research (IJAIR) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics of Artificial intelligent Research which covers four (4) ...