Bulletin of Intelligent Machines and Algorithms
Vol. 1 No. 1 (2025): BIMA November 2025 Issue

Comparative Analysis of Machine Learning Algorithms for Indonesian Twitter Sentiment Classification on the Jakarta–Bandung High-Speed Rail Project

Muhammad Noerhadi (Universitas Informatika dan Bisnis Indonesia)
Budiman (Universitas Informatika dan Bisnis Indonesia)
Sardjono (Universitas Informatika dan Bisnis Indonesia)



Article Info

Publish Date
11 Nov 2025

Abstract

The rapid growth of social media in Indonesia has opened up new opportunities to gauge public opinion on major national initiatives. One of the most controversial projects is the Jakarta–Bandung High-Speed Railway (KCJB), which has sparked mixed responses due to its financial, environmental, and socio-political implications. To meet the need for systematic analysis, this study applies sentiment analysis to Indonesian Twitter data to evaluate public perspectives on the KCJB project. This research uses a step-by-step methodology, including data collection via the Twitter API, text preprocessing, manual tagging into positive and negative sentiments, and feature extraction using the Term Frequency–Inverse Document Frequency (TF-IDF) method. Four machine learning algorithms—Naïve Bayes, Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Random Forest—were trained and verified on stratified data splits, with performance evaluated using accuracy, precision, recall, F1-score, and Area Under the Curve (AUC). The results show that SVM consistently outperforms other models, achieving up to 73% accuracy with balanced precision and recall, as well as the highest AUC value. These findings confirm the robustness of SVM in handling high-dimensional Indonesian text. In addition to its academic contribution to sentiment analysis in languages with limited resources, this research offers practical implications by providing data-driven insights for policymakers and businesses for real-time monitoring, strategic communication, and informed decision-making.

Copyrights © 2025






Journal Info

Abbrev

AI

Publisher

Subject

Computer Science & IT

Description

BIMA (Bulletin of Intelligent Machines and Algorithms) is an international peer-reviewed journal dedicated to promoting research in the fields of artificial intelligence, machine learning, and algorithms. BIMA serves as a platform for publishing the latest research findings and innovative ...