The increasing integration and digitization of smart grid systems have exposed them to a variety of security threats, necessitating robust security measures to ensure their reliability and efficiency. This paper proposes a novel Digital Twin-Based Cyber-Physical Security Framework, incorporating AI-driven predictive maintenance and zero-trust architecture to address the evolving challenges of securing smart grids. By leveraging digital twin technology, this framework creates a real-time virtual representation of physical systems, enabling continuous monitoring and simulation for enhanced security and operational performance. Zero-trust security principles are integrated to ensure that no entity, whether inside or outside the network, is trusted by default, thus significantly reducing the risk of cyber-attacks. Additionally, AI-driven predictive maintenance enhances the frameworkâs reliability by proactively identifying potential failures before they occur, reducing downtime and improving system resilience. Through the development and simulation of this framework, including attack and failure scenarios, the paper demonstrates that the proposed system outperforms traditional methods in terms of anomaly detection, system downtime, and response times. The integration of predictive maintenance allows for early identification of component failures, thus enhancing the overall resilience of the grid. The zero-trust architecture further strengthens the cybersecurity posture, preventing unauthorized access and attacks. The study also identifies challenges, such as data synchronization and scalability, which must be addressed for broader implementation in large-scale smart grid systems. The findings suggest that the proposed framework could play a critical role in the future evolution of smart grid security, offering valuable insights for researchers and practitioners.
Copyrights © 2025