Jurnal Teknik Informatika dan Teknologi Informasi
Vol. 5 No. 3 (2025): Desember: Jurnal Teknik Informatika dan Teknologi Informasi

Penerapan dan Perbandingan Algoritma SVM, Naive Bayes, dan Gradient Boosting dalam Prediksi Stroke

Joseph Melchior Nababan (Universitas Bina Sarana Informatika)
Iqro Mukti Arto (Universitas Bina Sarana Informatika)
Putra Satria (Universitas Bina Sarana Informatika)
Sumanto Sumanto (Universitas Bina Sarana Informatika)
Imam Budiawan (Universitas Bina Sarana Informatika)
Roida Pakpahan (Universitas Bina Sarana Informatika)



Article Info

Publish Date
27 Nov 2025

Abstract

Stroke is a major cardiovascular disease that significantly contributes to global mortality and disability rates. Early detection through stroke risk prediction is essential in reducing its impact. This study focuses on evaluating and comparing the performance of three machine learning algorithms—Support Vector Machine (SVM), Naive Bayes (NB), and Gradient Boosting (GB)—in predicting stroke occurrence. The research utilizes the Healthcare Stroke Dataset, which contains 5,109 records and 11 predictor variables. Modeling was performed using Orange Data Mining software, with 70% of the data allocated for training and 30% for testing. The results show that the SVM algorithm achieved the highest performance, obtaining an AUC score of 0.919 and an accuracy of 96.0%, followed by Gradient Boosting with an AUC of 0.885 and accuracy of 95.2%, and Naive Bayes with an AUC of 0.803 and accuracy of 88.2%. Therefore, SVM is identified as the most effective algorithm for predicting stroke risk within this dataset.

Copyrights © 2025






Journal Info

Abbrev

jutiti

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Informatika dan Teknik Informasi (JUTITI) adalah jurnal ilmiah peer review yang diterbitkan oleh Politeknik Pratama. Jurnal Teknik Informatika dan Teknik Informasi (JUTITI) terbit dalam tiga edisi dalam setahun, yaitu edisi Februari, Juni dan Oktober. Kontributor Jurnal Teknik ...