Jurnal Teknik Informatika dan Teknologi Informasi
Vol. 5 No. 3 (2025): Desember: Jurnal Teknik Informatika dan Teknologi Informasi

Klasifikasi Wajah untuk Rekomendasi Gaya Rambut Menggunakan SVM dan Random Forest

Mochamad Rizky Ainur Ridho (Universitas BIna Sarana Informatika)
Mahatma Mahesa (Universitas Bina Sarana Informatika)
Bagus Adi Wibowo (Universitas BIna Sarana Informatika)
Rachmat Adi Purnama (Universitas BIna Sarana Informatika)
Veti Apriana (Universitas BIna Sarana Informatika)
Rame Santoso (Universitas Bina Sarana Informatika)



Article Info

Publish Date
17 Dec 2025

Abstract

The goal this project is to create a face-shape classification and hairstyle recommendation system by combining Support Vector Machine (SVM) and Random Forest (RF) algorithms with Histogram of Oriented Gradients (HOG) feature extraction. This study is motivated by the growing demand for individualized appearance support, as many users find it difficult to find haircuts that complement their face features. The method first preprocesses facial photos, uses HOG to extract key geometric and texture-based features, and then uses SVM and RF models to categorize the images. For training, validation, and testing, a dataset of five different face shapes is utilized. According to experimental results, the Random Forest model has an accuracy of about 89%, while the SVM model achieves an accuracy of about 95%. These findings suggest that SVM is better suited for managing high-dimensional feature spaces generated by HOG extraction. A recommendation system that offers hairstyle recommendations based on the anticipated face shape is then integrated with the trained model. The system is useful for real-time use since it can process pictures taken with the camera or uploaded from the gallery. Overall, this study shows that integrating HOG with SVM offers a dependable basis for creating customized hairdo recommendations as well as an efficient method for face-shape classification.  

Copyrights © 2025






Journal Info

Abbrev

jutiti

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Informatika dan Teknik Informasi (JUTITI) adalah jurnal ilmiah peer review yang diterbitkan oleh Politeknik Pratama. Jurnal Teknik Informatika dan Teknik Informasi (JUTITI) terbit dalam tiga edisi dalam setahun, yaitu edisi Februari, Juni dan Oktober. Kontributor Jurnal Teknik ...