Journal of the Indonesian Mathematical Society
Volume 22 Number 2 (October 2016)

FOUNDATIONS OF ORDERED (SEMI)HYPERRINGS

Davvaz, Bijan (Unknown)
Omidi, S. (Unknown)



Article Info

Publish Date
24 Jan 2017

Abstract

In this paper, we introduce the notion of general hyperring $(R,+,\cdot)$ besides a binary relation $\le $, where $\le $ is a partial order such that satisfies the conditions: (1) If $a \le b$, then $a+c \le b+c$, meaning that for any $x \in a+c$, there exists $y \in b+c$ such that $x\le y$. The case $c+a\le c+b$ is defined similarly. (2) If $a \le b$ and $c \in R$, then $a\cdot c \le b\cdot c$, meaning that for any $x\in a\cdot c$, there exists $y\in b\cdot c$ such that $x\le y$. The case $c\cdot a \le c\cdot b$ is defined similarly. This structure is called an ordered general hyperring. Also, we present several examples of ordered general hyperrings and prove some results in this respect. By using the notion of pseudoorder on an ordered general hyperring $(R,+,\cdot,\le)$, we obtain an ordered ring. Moreover, we study some properties of pseudoorder on an ordered general hyperring.DOI : http://dx.doi.org/10.22342/jims.22.2.233.131-150

Copyrights © 2016






Journal Info

Abbrev

JIMS

Publisher

Subject

Mathematics

Description

Journal of the Indonesian Mathematical Society disseminates new research results in all areas of mathematics and their applications. Besides research articles, the journal also receives survey papers that stimulate research in mathematics and their ...