Jurnal Teknologi Informasi dan Ilmu Komputer
Vol 4 No 4: Desember 2017

K-Modes Clustering untuk Mengetahui Jenis Masakan Daerah yang Populer pada Website Resep Online (Studi Kasus: Masakan Banjar di cookpad.com)

Fatma Indriani (Program Studi Ilmu Komputer Universitas Lambung Mangkurat)
Irwan Budiman (Universitas Lambung Mangkurat)



Article Info

Publish Date
31 Dec 2017

Abstract

AbstrakPada makalah ini dipaparkan clustering pada data resep masakan daerah Banjar untuk mengetahui jenis makanan yang paling banyak di-post secara online oleh pengguna website recipe sharing. Pertama-tama data resep sebanyak 355 dikumpulkan dari suatu website resep, untuk selanjutnya dilakukan ekstraksi data bahan dan pembersihan. Metode clustering yang dipilih adalah k-modes karena cocok digunakan pada data kategorikal. Berdasar metode Elbow, jumlah cluster yang ideal adalah k=4 dan k=8. Jumlah cluster k=4 menghasilkan kelompok yang lebih umum, sedangkan k=8 menghasilkan kelompok yang lebih spesifik. Adapun kelompok yang berhasil diidentifikasi untuk k=4 adalah sayur asam, soto banjar, masakan gurih lain-lain, kue dan bubur manis. Sedangkan kelompok dengan jumlah cluster k=8 adalah sayur asam, soto banjar, kue basah, masakan gurih lain-lain, masak habang, bubur manis, kuah ketupat, dan masakan gurih asam. Evaluasi nilai purity menunjukkan nilai masing-masing 0,825 untuk k=4 dan 0,831 untuk k=8.Kata kunci: data mining, clustering, k-modes, resep masakan, bahanAbstractIn this paper, we cluster user-submitted recipes of Banjar regional cuisine to find out which type of cuisine are popular according to its ingredients. 355 recipes are collected from a recipe sharing website, then the ingredients extracted and cleaned. The clustering method chosen is k-modes because it is suitable for categorical data. Based on the Elbow method, the ideal number of clusters is k = 4 and k = 8. The number of clusters k = 4 produces more general cuisines group, whereas k = 8 produces more specific groups. The groups identified for k = 4 are (1) “sayur asam” (sour soup), (2)“soto banjar” (Banjar chicken soup), (3) savory dishes, and (4) sweet dishes. While the group with the number of clusters k = 8 consists of (1)“sayur asam” (sour soup)  (2) “soto banjar”, (3) Banjar sweet puddings, (4) various savory dishes, (5) “masak habang” (Banjar sweet chili dishes), (6) sweet porridge, (7) “kuah ketupat” (spicy coconut soup) and (8) various savory sour dishes. The purity of clusters are shown to be 0.825 for k=4 and 0.831 for k=8.Keywords: clustering, k-modes, data mining, recipe, ingredient

Copyrights © 2017






Journal Info

Abbrev

JTIIK

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen ...