Journal of Engineering and Technological Sciences
Vol 49, No 5 (2017)

A Modified Radial Basis Function Method for Predicting Debris Flow Mean Velocity

Yang, Wenmin ( College of engineering, Henan University, Puyang, Henan Puyang 457000,)



Article Info

Publish Date
30 Nov 2017

Abstract

This study focused on a model for predicting debris flow mean velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. A modified radial basis function (MRBF) neural network was developed for predicting the debris flow mean velocity in the Jiangjia gully. A three-dimensional total error surface was used for establishing the predicting model. A back propagation (BP) neural network and the modified Manning formula (MMF) were used as benchmarks. Finally, the sensitivity degrees of five variables that influence debris flow velocity were analyzed. The results show that the mean error and the relative mean error of the 10 testing samples were only 0.31 m/s and 5.92%, respectively. This proves that the MRBF method performed very well in predicting debris flow mean velocity. Gradient of channel and unstable layer thickness have a greater impact on debris flow mean velocity than the other three influencing variables. This proves that the proposed MRBF neural network is reliable in predicting debris flow mean velocity.

Copyrights © 2017






Journal Info

Abbrev

JETS

Publisher

Subject

Engineering

Description

Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental ...