International Journal of Intelligent Systems and Applications in Engineering
Vol 6, No 1 (2018)

Feature Selection using FFS and PCA in Biomedical Data Classification with AdaBoost-SVM

Ceylan, Rahime (Unknown)
Barstugan, Mucahid (Unknown)



Article Info

Publish Date
29 Mar 2018

Abstract

: Recently, there has been an increasing trend to propose computer aided diagnosis systems for biomedical pattern recognition. A computer aided diagnosis method, which aims higher classification accuracy, is developed to classify the biomedical dataset. This new method includes two types of machine learning algorithms: feature selection and classification. In this method, firstly, features were extracted from biomedical dataset, then the extracted features were classified by hybrid AdaBoost-Support Vector Machines (SVM) classifier structure. For feature selection, Forward Feature Selection (FFS) and Principal Component Analysis (PCA) algorithms were used. Following it, advantages and disadvantages of these algorithms were evaluated. The proposed two different hybrid structures and other studies in literature were compared with our findings. Wisconsin Breast Cancer (WBC), Pima Diabetes (PD), Heart (Statlog) biomedical datasets and Electrocardiogram (ECG) signals were taken from UCI database and these datasets were used to test the proposed hybrid structure. The obtained results show that the proposed hybrid structure has high classification accuracy for biomedical data classification.

Copyrights © 2018






Journal Info

Abbrev

IJISAE

Publisher

Subject

Computer Science & IT

Description

International Journal of Intelligent Systems and Applications in Engineering (IJISAE) is an international and interdisciplinary journal for both invited and contributed peer reviewed articles that intelligent systems and applications in engineering at all levels. The journal publishes a broad range ...