International Journal of Intelligent Systems and Applications in Engineering
Vol 5, No 2 (2017)

Comparison of Classification Techniques on Energy Efficiency Dataset

TOPRAK, Ahmet (Unknown)
KOKLU, Nigmet (Unknown)
TOPRAK, Aysegul (Unknown)
OZCAN, Recai (Unknown)



Article Info

Publish Date
30 Jun 2017

Abstract

The definition of the data mining can be told as to extract information or knowledge from large volumes of data. Statistical and machine learning techniques are used for the determination of the models to be used for data mining predictions. Today, data mining is used in many different areas such as science and engineering, health, commerce, shopping, banking and finance, education and internet. This study make use of WEKA (Waikato Environment for Knowledge Analysis) to compare the different classification techniques on energy efficiency datasets. In this study 10 different Data Mining methods namely Bagging, Decorate, Rotation Forest, J48, NNge, K-Star, Naïve Bayes, Dagging, Bayes Net and JRip classification methods were applied on energy efficiency dataset that were taken from UCI Machine Learning Repository. When comparing the performances of algorithms it’s been found that Rotation Forest has highest accuracy whereas Dagging had the worst accuracy.

Copyrights © 2017






Journal Info

Abbrev

IJISAE

Publisher

Subject

Computer Science & IT

Description

International Journal of Intelligent Systems and Applications in Engineering (IJISAE) is an international and interdisciplinary journal for both invited and contributed peer reviewed articles that intelligent systems and applications in engineering at all levels. The journal publishes a broad range ...