International Journal of Intelligent Systems and Applications in Engineering
Vol 5, No 4 (2017)

Comparison of Artifıcial Neural Networks and Response Surface Methodology in Stone Mastic Asphalt Using Waste Granite Filler

Caner, Murat (Unknown)



Article Info

Publish Date
12 Dec 2017

Abstract

This study examined the modeling performance of Artificial Neural Networks (ANN) and Response Surface Methodology (RSM) using experimental data of mechanical and volumetric properties of stone mastic asphalt (SMA) samples. These samples were produced with Marshall Design method using different ratios of granite sludge filler (11-12%) and limestone filler (10%). The impact of percentage of bitumen, mineral filler rates and unit volume weights of samples were used as input parameters and Marshall Stability (MS) values were used as output parameter. Mechanical immersion tests were performed to examine moisture susceptibility on SMA samples that have different filler rates (10-11-12%). In order to examine the reliability of the obtained models error and regression analysis results were shown comparing model responses with the experimental results. 

Copyrights © 2017






Journal Info

Abbrev

IJISAE

Publisher

Subject

Computer Science & IT

Description

International Journal of Intelligent Systems and Applications in Engineering (IJISAE) is an international and interdisciplinary journal for both invited and contributed peer reviewed articles that intelligent systems and applications in engineering at all levels. The journal publishes a broad range ...