International Journal of Intelligent Systems and Applications in Engineering
Vol 4, No 4 (2016)

A Region Covariances-based Visual Attention Model for RGB-D Images

Erdem, Erkut (Unknown)



Article Info

Publish Date
07 Dec 2016

Abstract

Existing computational models of visual attention generally employ simple image features such as color, intensity or orientation to generate a saliency map which highlights the image parts that attract human attention. Interestingly, most of these models do not process any depth information and operate only on standard two-dimensional RGB images. On the other hand, depth processing through stereo vision is a key characteristics of the human visual system. In line with this observation, in this study, we propose to extend two state-of-the-art static saliency models that depend on region covariances to process additional depth information available in RGB-D images. We evaluate our proposed models on NUS-3D benchmark dataset by taking into account different evaluation metrics. Our results reveal that using the additional depth information improves the saliency prediction in a statistically significant manner, giving more accurate saliency maps.

Copyrights © 2016






Journal Info

Abbrev

IJISAE

Publisher

Subject

Computer Science & IT

Description

International Journal of Intelligent Systems and Applications in Engineering (IJISAE) is an international and interdisciplinary journal for both invited and contributed peer reviewed articles that intelligent systems and applications in engineering at all levels. The journal publishes a broad range ...