Jurnal Informatika Universitas Pamulang
Vol 2, No 1 (2017): JURNAL INFORMATIKA UNIVERSITAS PAMULANG

Analisis Sentiment pada Sosial Media Twitter Menggunakan Naїve Bayes Classifier dengan Feature Selection Particle Swarm Optimization dan Term Frequency

Yono Cahyono (Universitas Pamulang)



Article Info

Publish Date
25 Mar 2017

Abstract

Pengguna media sosial saat ini sangat besar; dimana setiap orang mengungkapkan pendapat; komentar; kritik dan lain-lain. Data tersebut memberikan informasi yang berharga untuk dapat membantu orang atau organisasi dalam pengambilan keputusan. Jumlah data yang sangat besar tidak mungkin bagi manusia untuk membaca dan menganalisis secara manual. Ansalisis Sentiment merupakan proses dalam menganalisis; memahami; dan mengklasifikasi pendapat; evaluasi; penilaian; sikap; dan emosi terhadap suatu entitas tertentu seperti produk; jasa; organisasi; individu; peristiwa; topik; guna mendapatkan informasi. Penelitian ini bertujuan untuk memisahkan tweets berbahasa Indonesia pada media sosial twitter kedalam kategori positif; negatif dan netral. Metode naїve bayes Classifier (NBC) dengan feature selection Particle Swarm Optimization (PSO) diterapkan pada dataset untuk mengurangi atribut yang kurang relevan pada saat proses klasifikasi. Hasil pengujian menunjukan bahwa algoritma Naïve Bayes Classifier dengan feature selection Particle Swarm Optimization (PSO) menggunakan parameter term frequency (TF) dengan akurasi 97;48%.

Copyrights © 2017






Journal Info

Abbrev

informatika

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika Universitas Pamulang is a periodical scientific journal that contains research results in the field of computer science from all aspects of theory, practice and application. Papers can be in the form of technical papers or surveys of recent developments research ...