ILKOM Jurnal Ilmiah
Vol 9, No 2 (2017)

METODE SUPPORT VECTOR MACHINE DAN FORWARD SELECTION PREDIKSI PEMBAYARAN PEMBELIAN BAHAN BAKU KOPRA

Drajana, Ivo Colanus Rally (Unknown)



Article Info

Publish Date
23 Aug 2017

Abstract

Telah banyak peneliti-peneliti termotivasi dalam meningkatkan kinerja performa prediksi. Support Vector Machine (SVM) metode yang berlandaskan pada teori pembelajaran statistic dan memberi hasil yang menjanjikan akan lebih baik dibanding metode lain. SVM bekerja juga dengan baik terhadap data yang berdimensi tinggi dengan menggunakan teknik kernel. Penentuan variabel yang relevan sangat dibutuhkan untuk dapat memberikan kinerja performa lebih efektif lagi pada suatu model. Pada penelitian ini bermaksud untuk mengembangkan model prediksi dengan mengkombinasikan algoritma Support Vector Machine dengan Feature Selection, khususnya forward selection dalam memprediksi pembayaran pembelian bahan baku kopra. Model yang diusulkan dievaluasi menggunakan data time pembelian bahan baku kopra. Hasil eksperimen penelitian ini menunjukan dimana series pembayaran algoritma SVM dan Forward Selection memberikan kinerja performa yang terbaik dibandingkan SVM, SVM dan Backward Elimination serta BPNN dan Feature Selection.

Copyrights © 2017






Journal Info

Abbrev

ILKOM

Publisher

Subject

Computer Science & IT

Description

ILKOM Jurnal Ilmiah is an Indonesian scientific journal published by the Department of Information Technology, Faculty of Computer Science, Universitas Muslim Indonesia. ILKOM Jurnal Ilmiah covers all aspects of the latest outstanding research and developments in the field of Computer science, ...