Jurnal ULTIMATICS
Vol 6 No 2 (2014): Ultimatics: Jurnal Ilmu Teknik Informatika

Applying Neural Network Model to Hybrid Tourist Attraction Recommendations

Marcelli Indriana (Universitas Multimedia Nusantara)
Chein-Shung Hwang (Universitas Multimedia Nusantara)



Article Info

Publish Date
01 Dec 2014

Abstract

Recently, recommender systems have been developed for a variety of domains. Recommender systems also can be applied in tourism industry to help tourists organizing their travel plans. Recommender systems can be developed by a variety of different techniques such as Content-Based filtering (CB), Collaborative filtering (CF), and Demographic filtering (DF). However, the uses of these techniques individually will have some disadvantages. In this research, we propose a hybrid recommender system to combine the predictions from CB, CF and DF approaches using neural network model. Neural network model will learn by processing a training dataset, comparing the network’s prediction for each dataset with the actual known target value. For each training dataset, the weights are modified to minimize the mean-squared error between the network’s prediction and the actual target value. The experimental results showed that the neural network model outperforms each individual recommendation techniques. Index Terms - Colaborative Filtering, Content-based filtering, Data Mining, Demographic Filtering, Hybrid Recommender System, Neural Network

Copyrights © 2014






Journal Info

Abbrev

TI

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

Jurnal ULTIMATICS merupakan Jurnal Program Studi Teknik Informatika Universitas Multimedia Nusantara yang menyajikan artikel-artikel penelitian ilmiah dalam bidang analisis dan desain sistem, programming, algoritma, rekayasa perangkat lunak, serta isu-isu teoritis dan praktis yang terkini, mencakup ...