Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Vol 3, No 4, November 2018

Feature Selection on Pregnancy Risk Classification Using C5.0 Method

Azhar, Yufis (Unknown)
Afdian, Riz (Unknown)



Article Info

Publish Date
27 Oct 2018

Abstract

The maternal mortality rate in Indonesia is still relatively high. This is caused by several factors, including the ignorance of pregnant women about the risk status of pregnancy. Several methods are proposed for early detection of the risk of a mothers pregnancy. However, no one has highlighted what features are most influential in the process of classifying the risk of pregnancy. In this research, we use data of pregnant women in one of the health centers in Malang, Indonesia, as a dataset. The dataset has 107 features, therefore, feature selection is needed for the classification process. We propose to use the C5.0 method to select important features while classifying dataset into low, high, and very high risk of pregnancy. C5.0 was chosen because this method has a better pruning algorithm and requires relatively smaller memory compared to C4.5. Another classification method (SVM, Naive Bayes, and Nearest Neighbor) is then used to compare the accuracy values between datasets that use all features with datasets that only use the selected features. The test results show that feature selection can increase accuracy by up to 5%.

Copyrights © 2018






Journal Info

Abbrev

kinetik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Engineering

Description

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control was published by Universitas Muhammadiyah Malang. journal is open access journal in the field of Informatics and Electrical Engineering. This journal is available for researchers who want to improve ...