Seminar Nasional Teknologi Informasi Komunikasi dan Industri
2018: SNTIKI 10

Penerapan Learning Vector Quantization 3 (LVQ 3) untuk Menentukan Penyakit Gangguan Kejiwaan

Elvia Budianita (UIN Sultan Syarif Kasim Riau)
Fadhilah Syafria (UIN Sultan Syarif Kasim Riau)
Iis Afrianty (UIN Sultan Syarif Kasim Riau)



Article Info

Publish Date
23 Nov 2018

Abstract

Beberapa pendapat yang berkembang di kalangan masyarakat bahwa gangguan jiwa itu identik dengan gila (sakit jiwa), sedangkan gangguan jiwa tidak sama dengan sakit jiwa. Seseorang yang mengalami gangguan pada kesehatan mentalnya (gangguan jiwa), jika tidak segera ditangani akan berkembang menjadi sakit jiwa. Pasien yang mengalami sakit jiwa dirawat di rumah sakit (rawat inap), sedangkan pasien yang mengalami gangguan jiwa melakukan perawatan jalan atau diagnosa oleh Dokter yang memerlukan waktu hingga satu bulan. Oleh karena itu, untuk membantu masyarakat agar bisa dengan cepat mengetahui seseorang terkena gangguan jiwa, maka dibutuhkan suatu sistem penerapan dibidang teknologi informasi. Metode yang digunakan adalah Learning Vector Quantization 3 (LVQ3) dengan inputan 14 gejala dan hasil keluaran 5 jenis penyakit kejiwaan yaitu penyakit Skizofernia, Gangguan  Mental Organik (GMO), Gangguan mental dan perilaku akibat pengguna zat, Gangguan suasana perasaan dan Gangguan perkembangan psikologis. Parameter yang digunakan adalah learning rate 0.02, 0.025, 0.045, 0.050, 0.75, pengurangan learning rate 0.005, minimal learning rate 0.01, dan nilai window 0, 0.2, 0.4. Jumlah data yang digunakan yaitu 190 data latih dan 20 data uji. Berdasarkan hasil pengujian nilai window dan jumlah data latih mempengaruhi hasil akurasi. Akurasi tertinggi diperoleh adalah 95%. Metode Learning Vector Quantization 3 dapat diterapkan untuk menentukan jenis gangguan kejiwaan. Kata kunci: gangguan jiwa, learning vector quantization 3, window

Copyrights © 2018






Journal Info

Abbrev

SNTIKI

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Industrial & Manufacturing Engineering Mathematics

Description

SNTIKI adalah Seminar Nasional Teknologi Informasi, Komunikasi dan Industri yang diselenggarakan setiap tahun oleh Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau. ISSN 2579 7271 (Print) | ISSN 2579 5406 ...