Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
Vol 6, No 4: December 2018

Malayalam Handwritten Character Recognition Using AlexNet Based Architecture

Ajay James (Government Engineering College)
Manjusha J (Government Engineering College)
Chandran Saravanan (NIT, Durgapur)



Article Info

Publish Date
25 Dec 2018

Abstract

This research article proposes a new handwritten Malayalam character recognition model based on AlexNet based architecture. The Malayalam language consists of a variety of characters having similar features, thus, differentiating characters is a challenging task. A lot of handcrafted feature extraction methods have been used for the classification of Malayalam characters. Convolutional Neural Networks (CNN) is one of the popular methods used in image and language recognition. AlexNet based CNN is proposed for feature extraction of basic and compound Malayalam characters. Furthermore, Support Vector Machine (SVM) is used for classification of the Malayalam characters. The 44 primary and 36 compound Malayalam characters are recognised with better accuracy and achieved minimal time consumption using this model. A dataset consisting of about 180,000 characters is used for training and testing purposes. This proposed model produces an efficiency of 98% with the dataset. Further, a dataset for Malayalam characters is developed in this research work and shared on Internet

Copyrights © 2018






Journal Info

Abbrev

IJEEI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Indonesian Journal of Electrical Engineering and Informatics (IJEEI) is a peer reviewed International Journal in English published four issues per year (March, June, September and December). The aim of Indonesian Journal of Electrical Engineering and Informatics (IJEEI) is to publish high-quality ...