International Journal of Artificial Intelligence Research
Vol 3, No 1 (2019): June 2019

Quantum Inspired Genetic Programming Model to Predict Toxicity Degree for Chemical Compounds

Darwish, Saad Mohamed (Unknown)



Article Info

Publish Date
07 Jun 2018

Abstract

Cheminformatics plays a vital role to maintain a large amount of chemical data. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in domains such as cosmetics, drug design, food safety, and manufacturing chemical compounds. Toxicity prediction topic requires several new approaches for knowledge discovery from data to paradigm composite associations between the modules of the chemical compound; such techniques need more computational cost as the number of chemical compounds increases. State-of-the-art prediction methods such as neural network and multi-layer regression that requires either tuning parameters or complex transformations of predictor or outcome variables are not achieving high accuracy results.  This paper proposes a Quantum Inspired Genetic Programming “QIGP” model to improve the prediction accuracy. Genetic Programming is utilized to give a linear equation for calculating toxicity degree more accurately. Quantum computing is employed to improve the selection of the best-of-run individuals and handles parsimony pressure to reduce the complexity of the solutions. The results of the internal validation analysis indicated that the QIGP model has the better goodness of fit statistics and significantly outperforms the Neural Network model.

Copyrights © 2019






Journal Info

Abbrev

IJAIR

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal Of Artificial Intelligence Research (IJAIR) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics of Artificial intelligent Research which covers four (4) ...